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ABSTRACT: The article presents evidence about the Middle Palaeolithic and Middle to Upper Palaeolithic
transition interval in the karst area of the Danube Gorges in the Lower Danube Basin. We review the extant data and
present new evidence from two recently investigated sites found on the Serbian side of the Danube River – Tabula
Traiana and Dubočka‐Kozja caves. The two sites have yielded layers dating to both the Middle and Upper
Palaeolithic and have been investigated by the application of modern standards of excavation and recovery along
with a suite of state‐of‐the‐art analytical procedures. The presentation focuses on micromorphological analyses of the
caves’ sediments, characterisation of cryptotephra, a suite of new radiometric dates (accelerator mass spectrometry
and optically stimulated luminescence) as well as proteomics (zooarchaeology by mass spectrometry) and stable
isotope data in discerning patterns of human occupation of these locales over the long term.
© 2021 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd.
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Introduction
There is a dearth of well‐researched and dated Palaeolithic
sequences in large parts of the Balkans with uneven quality of
the extant data. Our understanding remains coarse‐grained
even though this region must have represented a key land
route along which hominin populations expanded northwards
and westwards from Asia Minor at various times during early
prehistory. Like other areas of southern Europe, the Balkans
and the riparian zone of the Danube catchment (Fig. 1), as an
important migration conduit, likely acted as a refugium at
different times within the pattern of ebb and flow fluctuations
in the occurrence and displacement of different animal, plant
and hominin taxa over the long term. Recently, the importance

of the Danube River corridor as a route for hominin dispersal
and a zone of high resource productivity is emerging through
new discoveries and the re‐evaluation of previous Palaeolithic
finds in the wider catchment of the southern Carpathian Basin
in Romania, Bulgaria and Serbia (e.g. Anghelinu et al., 2012;
Băltean, 2011; Chu, 2018; Hauck et al., 2018; Mihailović
et al., 2011; Tsanova, 2008).
Over the past decade or so, there has been a growing

impetus in various parts of the region to discover and
investigate Palaeolithic sites, both in caves and in open‐air
locations, as well as to acquire high‐resolution data with
modern standards of data collection, recording and analysis
(e.g. Alex et al., 2019; Borić et al., 2012; Boschian et al., 2017;
Chu et al., 2014, 2015; Dogandžić et al., 2014; Fewlass et al.,
2020; Harvati and Roksandic, 2016; Hublin et al., 2020; Iovita
et al., 2014; Karavanić et al., 2008; Mandić and Borić, 2015;
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Figure 1. Principal sites with Middle and Initial/
Early Upper Palaeolithic sequences in south‐eastern
Europe. Bathymetric contours show the drop of sea
levels ‐110 m; source: the General Bathymetric
Chart of the Oceans (GEBCO) https://www.gebco.
net/data_and_products/gridded_bathymetry_data/.
Base map prepared by Andrea Zupancich. Sites: 1.
Asprochaliko; 2. Bacho Kiro; 3. Baranica; 4. Bioče;
5. Coșava I; 6. Crvena Stijena; 7. Crvenka‐At; 8.
Gajtan; 9. Golema Pešt; 10. Hadži Prodanova; 11.
Klissoura; 12. Kozarnika; 13. Krapina; 14. Lakonis;
15. Londža; 16. Mujina; 17. Pešturina; 18.
Petrovaradin; 19. Românești‐Dumbrăvița; 20.
Šalitrena; 21. Samuilitsa II; 22. Smolućka; 23.
Temnata; 24. Theopetra; 25. Tinkova; 26. Vindija;
27. Zobište. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 2. Sites with Middle and Upper Palaeolithic sequences in the Danube Gorges area. Base map elevation data source: ASTER GDEM (‘ASTER
GDEM is a product of METI and NASA’) courtesy NASA/JPL‐Caltech. Figure prepared by Karol Wehr and Dušan Borić.
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Marín‐Arroyo and Mihailović, 2017; Mihailović, 2009, 2020;
Sirakov et al., 2010). A part of these efforts by several different
research teams is the project, whose first results are presented
here, that aims to acquire novel data about the character of
the Middle to Upper Palaeolithic transitional interval along the
‘Danube corridor’ by investigating the karstic region of the
Danube Gorges in the north‐central Balkans (Fig. 2).
The region's importance in later prehistoric periods is already
well established by the rich cultural record of terminal
Pleistocene–early Holocene Mesolithic forager cultures in the
Danube Gorges (Bonsall, 2008; Borić, 2011). Despite years of
minimal Palaeolithic research in the Lower Danube Basin,
new discoveries are beginning to unlock the potential of this
catchment as a hotspot of Palaeolithic archaeology that will
shed light on cultural innovation and adaptation during this
critical period of human history. We remain interested in better
understanding the role of the Lower Danube Basin as a major
communication corridor in the transmission of people as well
as cognitive, cultural and social novelties in relation to its
natural affordances (aspects of terrain, geography and resource
bioavailability) throughout the Middle to Upper Palaeolithic in
order to define the specific ‘pull’ factors of this regional
context.
In this paper, we present recently collected data from two

previously unknown sites found in the area of the Danube
Gorges of the wider Lower Danube Basin. Here, the Danube
Valley might have acted as an important conduit for the
movement of people and animals during different stadial and
interstadial conditions. The Danube Gorges are dominated by
karstic terrain containing numerous caves and rock shelters
(e.g. Constantin et al., 2001). Landscape features such as these
commonly preserve both cultural remains, as they have been
favoured by hominins seeking shelter for much of the
Quaternary, and sediments that can provide important
palaeoenvironmental data. Two discussed cave sites –
Dubočka‐Kozja and Tabula Traiana caves – are characterised
by Levallois‐based industries along with the likely presence of
Early Upper Palaeolithic assemblages at Tabula Traiana Cave
(TT). The first site is in the immediate hinterland of the Danube
(~10 km) while the second is found directly on the steep banks
of the Danube River. In this paper, we summarise the
characteristics of knapped stone industries and associated
faunal remains from the two sites before presenting new results
of accelerator mass spectrometry (AMS) dating of anthropically
modified bones and optically stimulated luminescence (OSL)
dating of sediments from both sites. Geomorphological
observations, micromorphological analyses of sediments, as
well as zooarchaeology by mass spectrometry (ZooMS) and
stable isotope analyses on faunal remains are further integrated
with other available data. Finally, the paper contextualises this
new data with other broadly contemporaneous sites in the
Balkans and examines to what extent this dataset can fit the
refugia model for southern European peninsulas during
different phases of the Pleistocene and how these new datasets
fit what we currently know about the last Neanderthals and
first modern humans in Europe.

Sites’ description
Tabula Traiana Cave

Tabula Traiana Cave (N44° 39’ 26.1606”, E22° 18’ 41.1006”,
i.e. UTM 7604444 E, 4946683 N) was discovered in the
immediate vicinity of the Roman stone inscription Tabula
Traiana, after which it bears its name, during a survey
conducted in the course of the collaborative project ‘Prehistory

of North‐East Serbia’ between the Departments of Archaeology
of the University of Cambridge and the University of Belgrade
in 2004. The cave is situated in the karstic massif of the Miroč
mountain, downstream from the Kazan Gorge of the Danube
(Fig. 3). The whole stretch of the Golo Brdo karst sloping
towards the Danube bears the name Faca Pešćeri in the local
Vlach dialect and means the ‘Face with Caves’. Near TT,
several other smaller cave openings, some filled with
sediments, have been found. No archaeological material was
found on cave floors and no test trenches have been placed in
the deposits of these caves, with a detailed test trenching of
these prospective sites planned in the near future. The access
to TT is difficult, with only a barely visible pathway descending
from the present‐day arterial road number 25/1 (Đerdapska
magistrala). TT is found some 22–23m above the present level
of the Danube at an altitude of 90–91m a.s.l. (Fig. 4).
The cave entrance has a western exposure and is about

4.5 m high and 4m wide at the base. Its cross section is
triangle‐shaped, with a clearly visible initial fracture. A small
terrace is found in front of TT with a large collapsed block of
the cave roof, visible upon excavation, that slid down the
sloping side in continuation of the north‐western cave wall. TT
is developed along a single fracture striking in a west–east
direction and was further shaped by water erosion from the
hinterland. Today it is out of hydrological function and there
are only dripwaters at certain times of the year. Inside, the floor
is horizontal for the first 15m and covered by thick, relatively
well‐sorted sediments closer to the surface, while very large
blocks of collapsed rock and rubble are more prominently
found towards the bottom of the stratigraphic sequence (see
below for a more detailed description and micromorphologi-
cal analysis of excavated cave sediments and stratigraphic
units). The walls are strongly corroded by long‐lasting seepage
of mildly acidic karst water. The first part of the cave with a
thick layer of sediments ends in a cascade inclined upwards
that leads towards the back of the cave, with the back chamber
devoid of sediments. There are several chimneys, which end
blindly (for more geomorphological details, see Mandić and
Borić 2015).
In 2004, a small test pit (Trench 1/2004, 2 × 2m) was dug at

the cave's entrance. Another trench (Trench 1/2005, 4 × 1.5 m)
was opened in the central part of the main chamber in 2005. In
2008, a 1m wide extension was made along the northern
profile of Trench 1/2005, while in the same year another
trench (2/2008, 1.5 × 3m) was dug closer to the cave entrance,
with its eastern section linked to Trench 1/2004. Conse-
quently, Trench 2/2008 was extended towards the interior of
the cave to connect this outer trench with the area excavated
inside the cave (Trench 3/2008, 2.5 × 1m), thus obtaining a
continuous longitudinal cross section of the cave's strati-
graphic sequence. In 2009, a trench was dug in the back of the
main cave chamber in continuation of Trench 1/2005, with a
0.5 m wide baulk separating the two trenches. In 2013, 2017
and 2019, excavations focused on the cave terrace and the
zone along the southern cave wall (14 m2), connecting this
outer zone with the cave interior. To date, in total, a horizontal
area of 44 m2 has been investigated in TT, albeit not all parts of
the cave have been investigated to the same depth.
The latest occupation (10–30 cm thick) is dated to the Early

Iron Age (Basarabi and Kalakača‐Gorne style of pottery)
(Kapuran et al., 2007). There were also sporadic finds of Late
Roman and early Medieval pottery, possibly associated with a
pit dug at the entrance of the cave. Only a few pottery
fragments can be dated to the Eneolithic period and are
stylistically related to the Coţofeni pottery style. A sterile layer
separates the late Holocene occupation (SU 200, 201 and 203)
from Pleistocene levels (Fig. 5).
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During excavations, two major sets of stratigraphic units
were clearly distinguished within the Pleistocene deposits,
based on the physical properties of sediments. The upper
stratigraphic units of Pleistocene age (SU 43, 90, 207, 217)
characterised by ashy yellowish brown to greyish brown
calcareous silt contained a very low density of knapped flint of
largely good knapping quality (n= 12) and a large number of
animal bones. These upper deposits have a sharp and distinct
boundary with lower stratigraphic units characterised by
reddish brown silt loam and an abundance of subangular
limestone clasts (Fig. 6). In the central part of the interior of the
cave, a fireplace was discovered at the bottom of the upper
Pleistocene‐age chronostratigraphic units (Fig. 5). The lower
levels (SU 206, 209, 211, 221, 226) yielded a larger, albeit still

a relatively small, assemblage of knapped stone artefacts
(n= 150) compared with the upper levels. These artefacts were
made on a local range of raw materials of poor knapping
quality, such as quartzite (c. 45%) and quartz (c. 45%) (cf.
Gurova et al., 2016).
While a more detailed description of the character of the

assemblage of knapped stone tools from this site will be
provided elsewhere, some of the characteristic pieces from the
two major chronostratigraphic horizons are shown in Fig. 7.
Although only a very few artefacts were found in the relatively
thick deposits of the upper Pleistocene‐age horizons, several of
these are suggestive of the Early Upper Palaeolithic (EUP)
industries, such as Protoaurignacian or Early Aurignacian: a
blade with bilateral continuous retouch, a Dufour bladelet, an

© 2021 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 37(2) 142–180 (2022)

Figure 3. 1: Photogrammetry‐derived TT cave area orthomosaic overlain on the World Imagery dataset (Esri – 1m cell size south‐east Europe)
demonstrating the improved quality for the investigated area when compared with openly accessible imagery datasets; 2: Snapshot of the TT area 3D
model; 3: View of the current location of the Roman plaque Tabula Traiana in the vicinity of TT Cave. [Color figure can be viewed at
wileyonlinelibrary.com]
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Figure 4. Plan of TT with excavation areas and locations of radiometric and sediment samples. Asterisk marks samples that produced results beyond
the limit of radiocarbon dating. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 5. A representative west–east stratigraphic section at TT with the location of micromorphological samples. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 6. A representative north–south stratigraphic
section at TT with the location of micromorphological
and OSL samples. [Color figure can be viewed at
wileyonlinelibrary.com]
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unretouched bladelet typical of prismatic‐core reduction, and
a bladelet with a right and distal direct marginal retouch. In
contrast to this small assemblage dominated by curated
artefacts indicative of ephemeral visitations of the cave by
likely modern humans, the assemblage from the lower
chronostratigraphic units is characterised by a low density of
tools (only a few scrapers, notches and denticulates) along
with the dominance of Levallois flakes, rare laminar blanks
and several irregular, single and opposed platform cores
(n= 7). This latter assemblage could confidently be assigned to
Middle Palaeolithic (MP) industries and, by proxy, Nean-
derthals. Spatially, finds in lower chronostratigraphic units are
more abundant in the cave entrance area and on the cave
terrace, while few Upper Palaeolithic (UP) tools are found both
deeper in the first chamber of the cave and on the terrace.
The detailed results of the complete morphological,

taphonomic and spatial analyses of the faunal assemblage
from TT is forthcoming, and it suffices to say here that this large
assemblage is characterised by the dominance of ibex Capra
ibex in both the MP and UP levels, while red deer Cervus
elaphus is also relatively well represented among the
herbivorous taxa. Based on the presence in the assemblage
of several predatory carnivore species, such as the cave lion
Panthera spelaea, cave hyena Crocuta spelaea, leopard
Panthera pardus, cave bear Ursus spelaeus, brown bear Ursus
arctos, wolf Canis lupus, marten Martes sp., lynx Lynx lynx,

wild cat Felis silvestris and fox Vulpes vulpes, it is likely that
agents of animal bone accumulation were both hominins and
carnivores (cf. Milošević 2020). Among small mammals, hare
Lepus europaeus, beaver Castor fiber, Insectivora, Chiroptera,
Arvicolidae, and Muridae have also been identified. Fish
remains of the genus Silurus and family Acipenseridae are also
present.

Dubočka‐Kozja

The Dubočka cave system was among the first caves in Serbia
to be scientifically studied at the end of the 19th century and it
contributed to the establishment of karstology in that country.
The cave's first mapping and morphological description were
made by the celebrated Serbian geographer and geomorphol-
ogist Jovan Cvijić (1895a; 1895b), who named it ‘Velika
Pećina (Big Cave) in the village of Duboka’, while subse-
quently the name Dubočka Cave became the most used. A
more recent description and analysis was provided by
Branislav Jovanović (1951; see also, more recent findings by
Zlokolica‐Mandić et al., 2003). The main cave with its large
entrance, which is 20 m high and 25m wide, also has an
alternative local name Gaura Mare (meaning Big Cave in the
Vlach language). It is situated 2.5 km from the village of
Duboka at the end of the Valja Mare Valley in the zone of the
isolated fluvio‐karst of Dubočka Rudina (with the summit at
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Figure 7. A selection of knapped stone artefacts
from (A) Upper Palaeolithic stratigraphic units, and
(B) Middle Palaeolithic stratigraphic units at TT; 1:
blade with bilateral continuous retouch (SU41,
quad. 3/26, depth 91.311m); 2: Dufour bladelet
with abrupt and marginal alternating retouch
(SU221, quad. 4.5/16, spit 8); 3: micro‐bladelet,
bilateral continuous retouch (SU216, quad. 4/25); 4:
bladelet blank (SU207); 5: retouched bladelet, distal
end (SU207/1, quad. 3/30); 6: rejuvenation flake of
the éclat débordant type (Tr. 1/2004, quad. A, spit
10); 7: Levallois flake (SU212x.8); 8: rejuvenation
flake of the éclat débordant type (Tr. 1/2004, quad.
C, spit 10); 9: laminar blank (SU212x.4); 10: single‐
platform core (SU221, quad. 5/18, spit 11); 11:
retouched flake (SU226x.89, spit 12); 12: scraper
(SU226x.52, spit 11). [Color figure can be viewed at
wileyonlinelibrary.com]
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514m a.s.l.) known as Veliki Krš (Fig. 8). The cave is formed in
Tithonian limestones overlaid by Lower Cretaceous limestones
and is situated 11 km from the banks of the Danube as the
crow flies. Dubočka Cave is one of the longest caves in Serbia

with the total length of 2734m. It consists of the main channel
(1010m), characterised by an expressive erosional morphol-
ogy, two longer lateral passages – Rusaljkin or First (472 m)
and Glinoviti or Second (590m) – and several smaller

© 2021 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 37(2) 142–180 (2022)

Figure 8. 1: Photogrammetry‐derived Dubočka Cave area orthomosaic overlying the World Imagery dataset (Esri composite – 1m cell size in south‐
eastern Europe) demonstrating the improved quality for the investigated area when compared with openly accessible imagery datasets; 2: Dubočka
area orthomosaic (in greyscale, for contrast) and the outline of the underlying cave systems (after Zlokolica‐Mandić et al., 2003: 108); 3: Snapshot of
the Dubočka area 3D model. [Color figure can be viewed at wileyonlinelibrary.com]
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channels. The cave is characterised by a complex set of
secondary morphological characteristics (e.g. chambers, ero-
sional pots, niches, cave karren) and complex processes of
clastic and chemical sedimentation. In the Second lateral
passage, a ‘High passage’ was discovered two decades ago
above a 7m high wall. In one of the chambers along this upper
level, the remains of several cave bears Ursus spelaeus, some
still in articulation and covered by a calcium carbonate crust
with stalagmites, were discovered, possibly suggesting the
existence of a previously passable, but presently closed
connection to the modern topographic surface, which is now
at c. 20 m above this chamber (Dimitrijević et al., 2002).
Dubočka Cave is seasonally hydrologically active with the
Ponorska River, originating below Kornjecel at 500m a.s.l.,
periodically passing through the main channel of the cave
during wet seasons, and springing up in front of the cave's
entrance, after which it forms a canyon with cascades and a
waterfall. The Ponorska River is the right tributary of the
Duboka River, which drains into the Pek River.
Approaching the main entrance of Dubočka Cave, on the

right side, there is an opening of a small cave known as Ovčja
(translated as ‘sheep's cave’). On the left side of the entrance, on
the steep side of the karst massif located some 30m directly
above the Ponorska River Cave, with a difficult approach and an
eastern exposure, there is another relatively large opening
(5.6m wide and 11m high) known as Kozja (translated as
‘goat's cave’) (Fig. 9). While Dubočka‐Ovčja remains untested,
archaeological investigations have so far focused on sediments
of Dubočka‐Kozja (DK) (N44° 33’ 6.12”, E21° 45’ 59.5”, i.e.
UTM 7561314.584 E, 4934278.094N), where the remains of
different prehistoric periods have been documented and
reported here for the first time. In 2011, our archaeological
team visited DK and noted an illicit digging of a trench along the
southern cave wall and possibly also in the small back chamber.
Subsequently, a 3.5 × 2m test trench was excavated in the
central part of the cave yielding a relatively thin layer of topmost
archaeological strata with ceramic finds dating to later
prehistory (Copper and Iron Ages) below which were c. 50 cm
of cultural strata dating to different phases of the Late
Pleistocene based on the characteristics of the discovered lithic
industry. Another almost completely filled cave opening
(Dubočka 1) is found in the same karstic massif above
the Duboka River, some 50m to the right of the main
entrance to Dubočka Cave. A test trench made in this cave
has shown a deep stratification of cultural layers and so far, only
the layers with the remains of later prehistoric periods have
been reached.
Relatively shallow Holocene and Pleistocene palimpsest

deposits (~60–80 cm deep) are discovered in DK in the area
marked as Trench 1/2013, where excavations have reached
the bedrock (Fig. 10). The top levels (SU 1, 2 and 9) of grey
colour and ashy consistency are characterised by the presence
of organic matter and contained Late Copper Age and Iron Age
ceramics and other finds. A large and deep recent robber
trench (SU3) significantly damaged Pleistocene sediments
beneath. At the interface of Holocene and Pleistocene
sediments sits the layer of loose sediment deposits of light
colour (SU2, Munsell pale brown 2.5Y 7.3). The main
Pleistocene stratigraphic unit (SU4) consists of relatively
homogeneous deposits of yellowish brown colour (Munsell
10YR 5/8) with a diffuse boundary between the lower and
upper parts of this unit. A couple of other Pleistocene
stratigraphic units (5, 10) have also been defined, all contain-
ing a fair amount of subangular limestone clasts.
Pleistocene levels at DK have provided a relatively large

assemblage of knapped stones from a relatively small
excavation area. While a more detailed publication of this

assemblage is forthcoming, a summary of the analysis is
provided here. The raw material is almost exclusively flint of
relatively good knapping quality. Nodules of similar looking
flint can be found in the riverbed of the Ponorska River at the
entrance to the nearby Dubočka Cave and might have been
transported by water from primary deposits. While this would
indicate a high availability of good quality materials in the
immediate vicinity of DK, there are several artefacts (e.g.
Fig. 12:14) that are macroscopically identified as the so‐called
‘Balkan flint’, i.e. yellow white‐spotted flint that originates in
northern Bulgaria, probably from Upper Cretaceous chalk and
chalk‐like limestones (Campanian and Maastrichtian age) in
the Pleven‐Nikopol region (cf. Gurova et al., 2016), more than
150 km from DK. The structure of the assemblage (n= 1578) is
as follows: debitage at 76.2%, tools at 21.2%, cores at 1.26%
and other at 1.4%. The debitage (n= 1202) comprises flakes
(43.4%), blades (1.4%), bladelets (3.1%), core trimming
elements (8.1%), chips (39.7%) and chunks (4.3%). Among
tools (n= 356, Figs. 11 and 12) retouched flakes dominate
(34.1%), followed by denticulates (15.3%), endscrapers
(10.8%), notches (7.5%), scrapers (6.6%), retouched blades
(4.2%), borers (3.3%), composite tools (3%), points (1.5%),
retouched bladelets (1.2%) and retouched core trimming
(1.2%), as well as backed bladelets, limaces, backed blades,
geometrics (the last four categories all below 1%), and other
(9.4%). There are 24 cores, among which are one centripetal
core (4.1%) (Fig. 12:22), four Levallois cores (16.2%)
(Fig. 12:23–26), irregular multiple platform cores (8.3%), one
unpatterned multiple platform core (4.1%), one single platform
core (4.1%), core/tools (8.3%) and residual cores (37.5%), all
characterised by a very high level of exploitation. Most of the
flint assemblage appears homogeneous, and the choice of raw
materials is noticeably distinct from flint deposited in the
Holocene levels. Artefacts are also found more densely in the
lowermost levels of the sequence. While the assemblage does
contain some UP tool types (endscrapers, borers, points), the
character of the assemblage based on various characteristics
(reduction strategies, highly reduced/retouched artefacts,
Levallois cores and flakes, domination of retouched flakes
with thick profiles, denticulates, faceted and gull‐wing/
chapeau de gendarme platforms) can be defined as MP and,
by proxy, Neanderthal.
A relatively small Pleistocene faunal assemblage from DK is

highly fragmented and taphonomically altered and the full
results of the analysis will be published elsewhere. Among the
identifiable remains, the dental remains of cave bear Ursus
spelaeus dominate, and ibex Capra ibex, wolf Canis lupus,
marmot Marmota marmota, and various bird remains are also
identified in very small numbers.

Materials and methods
Unmanned aerial vehicle landscape mapping

Drawing on the experiences of other projects utilising cost‐
effective mapping of the landscape in an archaeological
context (Verhoeven, 2009; Comer and Harrower, 2013;
Casana et al., 2014; Jorayev et al., 2016; Thomas, 2016, and
others), the areas surrounding the excavated caves in the
Danube Gorges were recorded using an unmanned aerial
vehicle and photogrammetric methods were employed to
generate 3D and 2D georeferenced outputs. The team used a
DJI Phantom 4 Pro Unmanned Aerial Vehicle with a 20
megapixel CMOS sensor for photography and a handheld GPS
unit for ground control points recording. The Dubočka cave
area was recorded over four days and the TT cave area over
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Figure 9. Plan of DK with excavation areas and locations of radiometric samples.
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two days in late July 2017. Photos were taken at an interval of
3 s at an average altitude of 107m for the Dubočka cave area,
and 115m for the TT cave area, due to the differences in
terrain and vegetation, during manually controlled flights. The
datasets were then processed using Agisoft Photoscan (now
Agisoft Metashape), Pix4D Mapper and refined using Meshlab
(for 3D models) and ArcGIS (for 2D raster datasets) software.
The resulting orthomosaics, digital elevation models and 3D
models were reconstructed from 2860 images covering an area
of 1.9 km2 and 2442 images covering an area of 0.81 km2 for
DK and TT, respectively. The outputs created were orthomo-
saics with 2.67 cm and 2.63 cm cell size, digital surface
models with 10.7 cm and 6.4 cm cell sizes and 3D models of
the areas consisting of 15.6 million faces and 24.9 million
faces, respectively.

Sediment micromorphology

In 2008, CAIF took samples from the northern section of
Trench 1/2005 (Fig. 5) for micromorphological and associated
multi‐element and palynological analyses from a Palaeolithic
fireplace area and uppermost late prehistoric levels at TT.
The soil thin‐section samples (Table 1) were prepared using the
methodology of Murphy (1986) and described using the
accepted terminology of Bullock et al. (1985) and Stoops
(2003). The geochemical samples were processed using the
ICP‐AES multi‐element analysis process by Als Chemex (www.
alschemex.com; 35 element aqua regia ICP‐AES, method
ICP‐41).
In 2017, KG took additional micromorphological samples at

TT (Fig. 6) and DK (Fig. 10) on profiles brought into light during
previous excavations. This time, 11 undisturbed sediment
monoliths for thin‐section preparation were collected from TT
and eight from DK (Tables 2 and 3). Samples for micro-
morphological analysis were collected from the profiles,
approximately one per unit, or at the boundary between units
to observe the boundary morphology. The monoliths were air‐
dried at 30°C in a ventilated oven until dry. The thin sections
were cut by a diamond disc and ground to 30 μm by

corundum abrasive powders. The size of all slides is 90 ×
55mm. Thin sections were observed with a standard petro-
graphic microscope at magnifications ranging from 4× to 40×
under plane‐polarised light (PPL), cross‐polarised light (XPL)
and oblique‐incident light. The descriptions follow the guide-
lines proposed by Stoops (2003), Bullock et al. (1985) and
Stoops et al. (2010).

Cryptotephra investigations

In June 2010, sediment samples for distal cryptotephra
analyses were collected from prepared stratigraphic sections
at TT. Sampling involved collection of 20–30 g of in situ
sediment at 2 cm consecutive and contiguous intervals along
continuous vertical profiles. Tephra Column 1 (west‐facing
section of quadrant 3/28, Trench 1/2005) yielded 30 samples
spanning stratigraphic units 201–209 (0.20–0.80m depth
below surface) (Fig. 6). Tephra Column 2 (north‐facing section
of quadrants 5/22–5/23 boundary, Trench 3/2008) produced
55 samples from units 217–220 (0.10–1.20m depth below
surface). All samples were identified with reference to the site
datum and other relevant provenience information.
In the laboratory, cryptotephra searches were carried out in

two stages: first at low (6–8 cm) depth resolution, by
amalgamation of sub‐samples from 3–4 adjacent sediment
bags; then where tephra shards were found at this resolution,
the individual 2 cm bag samples were processed again to
further pinpoint the sediment depth containing the tephra
layer. At all stages, samples were processed using the non‐
destructive density separation method described in Blockley
et al. (2005). This method concentrates the sediment fraction
most likely to contain volcanic glass shards according to grain
size and density. The resultant residue was examined under a
high‐powered polarised microscope and the number of tephra
glass shards was counted. Shard counts for the 2 cm depth
samples were quantified per gram of dry sediment (s/g).
Individual tephra glass shards were picked out by hand and

mounted onto an epoxy resin stub for compositional analysis.
Major and minor element oxide concentrations (Table 4) were
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Figure 10. East‐facing stratigraphic sections of Trench 1/2013 at DK and locations of micromorphological samples. [Color figure can be viewed at
wileyonlinelibrary.com]
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measured on the JEOL JXA8600 electron microscope in the
Research Laboratory for Archaeology and the History of Art,
University of Oxford (15 kV accelerating voltage, 6 nA beam
current, 10 μm defocused beam). Trace element concentra-
tions (Table 5) were measured by laser ablation inductively
coupled plasma mass spectroscopy (LA‐ICP‐MS), using the
Agilent 7500 ICP‐MS coupled to a 193 nm Resonetics ArF
eximer laser ablation system in the Department of Earth
Sciences, Royal Holloway University of London (instrumental
conditions followed Tomlinson et al., 2010: 5 Hz repetition
rate, 40 s sample/gas blank count, 25 μm spot size, NIST 612
calibration standard, 29Si internal standard element). Second-
ary standard glasses were run alongside all tephra analyses to
monitor instrumental precision and accuracy.

Microscopic examination of cutmarks on bones

A select number of bone specimens have undergone a
microscopic inspection by means of a Zeiss Axio Zoom
stereomicroscope (magnification from 10× and 178×) aimed at
recognising anthropic traces related to butchery, namely
cutmarks, distinguishing them from non‐anthropic modifica-
tions (e.g. carnivore and rodent gnaw marks, weathering, root
etching and signs of fungal activity), which can mimic human
traces on bones (Behrensmeyer, 1978; Shipman, 1981; Fisher,
1995; Lyman, 1994). Archaeological cutmarks were identified
through comparison with an experimental reference collection
at the DANTE – Diet and Ancient Technology laboratory of
Sapienza University of Rome and following criteria widely
accepted in literature (Binford, 1981; Blumenschine et al.,
1996; Fernández‐Jalvo et al., 1999).

AMS dates and stable isotope analyses

AMS dates were processed at the Oxford Radiocarbon
Accelerator Unit (ORAU), Oxford University, in 2007 (four
measurements from TT), 2013 (one measurement from DK)
and 2017 (nine measurements from DK and 11 measurements
from TT) (Table 6) using collagen extraction (Law and Hedges
1989), followed by the revised gelatinisation and filtration
protocol described by Bronk Ramsey et al. (2004a), and dated
by AMS as outlined in Bronk Ramsey et al. (2004b). One bone
sample (AA‐63887) was processed in the NSF Arizona AMS
facility in 2004.
In total, 14 animal bone specimens from the Middle and

Upper Palaeolithic levels of TT were analysed for δ13C and
δ15N to provide insights into past environmental conditions
and animal habitats at the site (Table 7). Collagen was
extracted and analysed at the Dorothy Garrod Laboratory for
stable isotope analysis at the University of Cambridge
following the procedure outlined in Privat, et al. (2002).
Samples were analysed using an automated elemental analyser
(Costech Analytical, Valencia, CA, USA) coupled in
continuous‐flow mode to a Thermo Finnigan MAT253 isotope
ratio mass spectrometer (Thermo Fisher Scientific, Bremen,
Germany) at the Godwin Laboratory, Department of Earth

Sciences, University of Cambridge (Cambridge, UK). Carbon
and nitrogen results are reported using the delta scale in ‰

relative to internationally accepted standards VPDB and AIR,
respectively. Based on replicate analyses of international
(IAEA: caffeine and glutamic acid‐USGS‐40) and in‐house
laboratory standards (nylon, alanine and bovine liver stan-
dards) the precision is better than ±0.2‰ for both δ13C and
δ15N values. All but one specimen (TAB12) yielded results
within the range of atomic C:N ratios (2.9 to 3.6) that indicate
suitably preserved collagen and are thus included in the
discussion.
In addition, AMS burn stable isotope values are reported in

this paper (Table 6), although these values were not run using a
wide range of stable isotope standards and the three‐point
calibration normally used when specifically measuring C and
N isotopes. Instead, only the Oxford lab Alanine stable isotope
standard was used (P. Ditchfield, pers. comm). Thus, the AMS
burn stable isotope values provide only indicative values and it
is problematic to report them alongside the values specifically
obtained using the three‐point calibration standard (Szpak
et al., 2017), even though the differences that the three‐point
calibration would make would probably be relatively small –
perhaps a few tenths of a per mil (P. Ditchfield, pers. comm). In
the future, we intend to remeasure all collagen leftovers from
AMS‐dated specimens specifically for C and N isotopes. For
the moment, in the discussion of stable isotope values we
briefly discuss AMS burn indicative stable isotope values from
TT (n= 17) and DK (n= 4), which were all made at the ORAU
and have ZooMS identifications, in order to understand how
comparable these values are with those specifically measured
for C and N isotopes. All these values come from directly dated
specimens and provide a good chronological control, and they
all have acceptable C:N ratios (2.8 to 3.3) (Table 6).

OSL dating

In November 2019, in total, six samples for OSL dating were
collected from homogeneous sedimentary units of exposed and
freshly cleaned sections of TT (Fig. 6) and DK (Fig. 10) (three
from each site) using metal tubes with caps. Additional
dosimetry samples of c. 30 g were also taken from the sampled
units (Table 8). OSL measurements of sand‐sized (180–255 μm)
quartz mineral grains were extracted from the inner, light‐
shielded parts of three OSL samples collected at each site.
Standard preparation techniques were applied under low
intensity light emitting diode (LED) laboratory lighting (peak
emission at 594 nm) and included wet sieving, HCl (10%)
treatment to remove carbonates, 30% H2O2 treatment to
remove organic matter and HF (48%) etching to remove the
outer (~10 nm) rind of quartz grains affected by alpha irradiation
and to dissolve feldspathic minerals. Heavy minerals were
removed by density gradient separation using a liquid solution
of sodium polytungstate (delta= 2.65 gcm−3) followed by
renewed rinsing in HCl (10%) to eliminate potential fluorite
contaminants with a final cleaning in demineralised water.
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Figure 11. A selection of knapped stone artefacts from Pleistocene stratigraphic units at DK; 1: retouched flake (SU4.x6, quad. 101/100/A, spit 5); 2:
scraper (SU4.x1, quad. 101/98, spit 4); 3: retouched blade (SU4, quad. 101/100/D, spit 5); 4: retouched blade (SU2, quad. 100/101/D, spit 3); 5:
scraper (SU4.x10, quad. 100/99/B, spit 5); 6: denticulate (SU4.x3, quad. 101/99, spit 4); 7: endscraper (SU4, quad. 100/99, spit 4); 8: retouched flake
(SU4, quad. 101/100/D, spit 5); 9: retouched chip (SU4, quad. 101/99/D, spit 5); 10: point (SU4, quad. 100/101/A, spit 3); 11: scraper+truncation
(SU4, quad. 100/101/A, spit 5); 12: denticulate (SU2, quad. 100/99, spit 2); 13. denticulate (SU4, quad. 100/101/D, spit 5); 14: point (SU5, quad.
101/101/A, spit 5); 15: truncation (SU4, quad. 101/99/D, spit 5); 16: retouched flake (SU4.x4, quad. 101/100/D, spit 5); 17: convergent scraper
(SU4.x28, quad. 100/98/A, spit 6); 18: point (SU4.x15, quad. 100/101/D, spit 6); 19: scraper (SU4, 100/98/A spit 7); 20: denticulate (SU4.x17, quad.
100/98/D, spit 4); 21: sidescraper (SU4.x1, quad. 101/101/A, spit 6); 22: retouched flake (SU10.x2, quad. 100/98/D, spit 8); 23: endscraper
(SU4.x18, quad. 101/101/A, spit 6); 24: scraper (SU4, quad. 100/98/B, spit 6); 25: retouched flake (SU4.x39, quad. 101/98/B, spit 7); 26: borer
(SU4.x41, quad. 101/98/B, spit 7); 27: scraper (SU4.x35, quad. 100/98/A, spit 7); 28: truncation (SU3, quad. 101/100, spit 2); 29: retouched flake
(SU4.x34, quad. 100/98/B, spit 7).
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Figure 12. A selection of knapped stone artefacts from Pleistocene stratigraphic units at DK. 1: retouched blade (SU4, quad. 100/98/A, spit 7); 2:
retouched blade (SU4.x32, quad. 101/98/B, spit 7); 3: retouched flake (SU4, quad. 100/98/C, spit 7); 4: denticulate (SU4, quad. 100/98/A, spit 7); 5:
convergent scraper (SU4.x32, quad. 101/98/B, spit 7); 6: retouched blade (SU4.x25, quad. 101/99/D, spit 6); 7: retouched flake (SU4.x45, quad.
100/98/B, spit 8); 8: retouched blade (SU3, quad. 100/99, spit 3); 9. truncation (SU4.x27, quad. 101/99/D, spit 6); 10: scraper, yellow white‐spotted
flint (SU4.x43, quad. 101/98/C, spit 7); 11: retouched flake (SU4, quad. 100/98/A, spit 7); 12: retouched flake (SU4.x34, quad. 100/98/B, spit 7); 13:
convergent scraper (SU4.x38, quad. 100/98/C, spit 7); 14: retouched flake (SU4.x33, quad. 101/98/B, spit 7); 15: retouched flake (SU4.x5, 100/98/A
spit 5); 16: scraper (SU4, quad. 100/98/A, spit 7); 17: endscraper (SU4.x44, quad. 101/98/B, spit 8); 18: retouched flake (SU4, quad. 100/98/C, spit
7); 19: retouched blade (SU4, quad. 101/98/B, spit 5); 20: convergent scraper (SU4, quad. 100/98/A, spit 7); 21: Levallois point (spoil, bag 65); 22:
centripetal core (SU4, quad. 100/98/A, spit 7); 23: Levallois core (SU4, quad. 100/98/A, spit 6); 24: Levallois core (SU4.x23, quad. 101/99, spit 6);
25: Levallois core (SU4.x59, quad. 996/997, spit 19); 26: Levallois core (SU4.x22, quad. 101/101/C, spit 6). [Color figure can be viewed at
wileyonlinelibrary.com]
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Dried quartz grains were mounted as multigrain aliquots on
aluminium discs with a 2–3mm spot of silicon oil adhesive
(Viscasil 60 000).
OSL measurements were performed in an automated

Lexsyg‐Smart luminescence reader (Richter et al., 2015)
manufactured by Freiberg Instruments (Germany) using a
single‐aliquot regenerative‐dose post‐IR green OSL measure-
ment protocol (Murray and Wintle, 2000; Banerjee et al.,
2001; Wallinga et al., 2002; Wintle and Murray 2006). The
instrument was fitted with a 90Sr‐90Y ceramic disc β‐source
providing an activity of ~1.85 GBq and delivering circa
0.11 Gy/s‐1 to coarse grains (180–255 µm). The source was
calibrated against a gamma‐irradiated Risø National Labora-
tory standard (Hansen et al., 2015) from Denmark. For optical
excitation, an OSL head unit fitted with 10 green LEDs
(emitting at 525± 20 nm; max. power 80mW/cm2) and 10
infrared LEDs (emitting at 850± 20 nm; max. power 300mW/
cm2) was used. The quartz ultraviolet emission signal at
375 nm was detected using a combination of Hoya U340 and
Delta BP 365/50EX optical filters mounted in front of a 25mm
head‐on Hamamatsu bi‐alkaline cathode photomultiplier tube
(model H7360‐02; 280–650 nm with peak sensitivity at
420 nm and ~27% quantum efficiency). To detect the
presence of potential feldspar contaminants, the 410 nm
feldspar emission signal was also detected using a filter
combination set comprising a Brightline HC414/46 and a
Schott BG 39.
The recorded data was analysed with the Analyst (version

4.57) software developed by Duller (2015) and the weighted
mean equivalent dose (De) was calculated using the Lumines-
cence package (version 0.9.8) developed by Kreutzer et al.
(2012) for the statistical programming language R. The
concentrations of radioactive elements (potassium, rubidium,
thorium and uranium) were determined by elemental analysis
using ICP‐MS/AES and converted to dose rates and lumines-
cence age estimates using the conversion factors of Guérin
et al. (2011) and the DRAC software (v1.02) developed by
Durcan et al. (2015). The contribution of cosmic radiation to
the total dose rate was calculated as a function of latitude,
altitude and burial depth, based on data by Prescott and
Hutton (1994) and assuming an average overburden density of
1.9 gcm‐3 and a thickness of 15± 5m for the overlying cave
bedrock. In the absence of direct in situ gamma‐ray spectro-
metry measurements and in order to achieve the best estimate
for the gamma dose rate contribution, layer‐to‐layer variations
in the radioactivity were taken into account by scaling the
gamma dose rate as originally proposed by Aitken (1985) and
using the R function scale gamma_dose recently developed by
Riedesel et al. (2020).

Zooarchaeology by mass spectrometry

Collagen peptide mass fingerprinting analysis, also known as
ZooMS (Buckley et al., 2009; Collins et al., 2010), was carried
out following the approach published by Buckley et al. (2009;
see also van der Sluis et al., 2014). In brief, this involved the
overnight demineralisation of bone samples in 0.6M hydro-
chloric acid, followed by gelatinisation of the acid‐insoluble

bone residue in 50mM ammonium bicarbonate at 65°C. The
supernatant from this step was digested with sequencing‐grade
trypsin (Promega, UK) overnight at 37°C, and acidified with
5% trifluoroacetic acid. Then, 0.5 µL of the sample solution
was co‐crystallised with 0.5 µL of α‐cyano‐4‐hydroxycinnamic
acid matrix solution on a Bruker ground steel matrix‐assisted
laser desorption/ionisation time‐of‐flight (MALDI TOF) target
plate. Samples were analysed using a Bruker UltrafleXtreme
mass spectrometer with a frequency‐tripled Nd:YAG laser at
the Department of Chemistry, Columbia University in the City
of New York, USA, with 2000 laser shots acquired over the m/
z range 800–3700. Spectra were searched manually for
taxonomically informative markers through comparison with
the set published by Buckley (2016), Buckley et al. (2009,
2017), and Welker et al. (2015). All raw spectral file data are
available at http://doi.org/10.5281/zenodo.5028649.

Results
TT – stratigraphy and micromorphology

The sampled section on the northern section of Trench 1/2005,
beyond the area of roof fall karst boulders in the entranceway
(Fig. 4), revealed the following stratigraphic sequence:

0–10 cm

laminated grey/black fine charcoal, ash and dung of late
prehistoric periods; spot‐sampled for micromorphology
across this layer boundary;

10–73 cm
fine (<2 cm), sub‐rounded to sub‐angular karst fragments in a

yellowish brown calcitic silt;

73–93 cm

small fireplace feature inset between two large karst blocks
infilled with reddish brown calcitic silt and included fine
charcoal; two spot samples were taken for
micromorphology across the upper and lower boundaries
of this feature;

93–118 cm
greyish brown calcareous silt with fine rock

fragments (<2 cm);
>118 cm unexcavated.

The cave sequence suggests that it has received minimal
post‐depositional disturbance, apart from the solution and
deposition of calcium carbonate on the interior cave walls.
Three sets of spot samples have been taken for micromorpho-
logical and palynological assessment. Only spot sample 1
(TT08/1) from the topmost levels taken to assess pollen
preservation produced well‐preserved pollen grains, suggest-
ing a broadleaved woodland assemblage with hazel, birch,
lime, hop‐hornbeam, grass and fern spores, and lots of
charcoal. The other two samples were barren. A selection of
multi‐element results is presented in Table 1. Sample 1
(5–12 cm) exhibits enhanced barium (Ba), manganese (Mn)
and phosphorus (P) values. In particular, barium (Ba) may
reflect the presence of wood ash (Fleisher and Sulas, 2015;
Macphail and Goldberg, 2010; Wattez and Courty, 1987), and
the extremely high phosphorus values most probably indicate
intensive organic waste accumulation and the possible use of
the cave floor by animals (Karkanas and Goldberg, 2010).
Similarly, the fireplace deposits also exhibit very high
phosphorus values (in samples 2 and 3). The basic
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Table 1. Selected multi‐element analysis results from TT on samples taken from Trench 1/2005.

Sample Depth from the surface Al(%) Ba (ppm) Ca(%) Fe(%) Mg(%) Mn (ppm) P(ppm)

1 5–12 cm 0.33 330 20.8 0.33 1.43 1340 >10 000
2 73–85 cm 1.63 100 4.74 1.82 0.34 180 7240
3 84–92 cm 1.91 170 5.84 1.84 0.36 335 >10 000
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thin‐section descriptions are given below, with more detailed
descriptions in Appendix 1.
Sample 1 (5–12 cm) was taken through the uppermost late

prehistoric fill layer of the cave and exhibits five fabric units.
The basal fabric unit 1 (c. 12–17 cm) is a finely aggregated,
very porous (25%) deposit of micritic and amorphous calcium
carbonate with a minor amount of fine sand and pure clay
‘staining’ the calcium carbonate (Fig. 13a). On its upper
surface are three irregular sized and shaped fragments of
amorphous sesquioxide (iron oxides and hydroxides) impreg-
nated and replaced organic matter (fabric unit 2; c. 12–13 cm).
Fabric unit 3 above (c. 11–12 cm) is composed of small
irregular aggregates of organic matter and plant tissue, all
amorphous iron oxide replaced and bioturbated, and micritic
calcium carbonate in a 1 cm thick lens. Overlying this is fabric
unit 4 (c. 9.5–11 cm), which is composed of a dense matrix of
amorphous iron oxide replaced organic matter with a
horizontal orientation in a 1–1.5 cm thick lens, although it
too has been bioturbated (Fig. 13b). In the upper fabric unit 5
(c. 5–9.5 cm), there are alternating fine laminae of orangey‐
brown micrite and amorphous organic matter, and dark brown
to black, finely comminuted organic matter and micrite in an
excremental matrix (Fig. 13c). This upper unit becomes much
disturbed by roots and soil fauna with many large, infilled
channels evident.
Overlying weathered karst material derived from the erosion

of the cave itself, are a series of superimposed horizons. The
first is a discontinuous zone of amorphous sesquioxide
replaced organic matter indicative of oxidised and iron
replaced organic matter. This appears to be much truncated
remnants, possibly a result of water action or human
disturbance. Above this is a centimetre‐thick zone of plant
tissue which is largely replaced by amorphous iron and much
bioturbated by the soil fauna. Above this is a second layer of
organic matter, very dense, all replaced by amorphous iron
oxides and with alternating laminae evident. But what these
two organic horizons represent is unclear. It could be byre
bedding material, but there is a singular lack of any phosphatic
features or phytoliths, which would be expected (Karkanas and
Goldberg, 2010: 602), and no micro‐artefactual debris typical
of people living in the cave is incorporated in this horizon.
Perhaps it just represents the storage or accumulation of plant
material.
Samples 2 (73–85 cm) and 3 (84–92 cm) were taken through

the Late Pleistocene‐age fireplace feature. Sample 2 is mainly
comprised of calcitic ash and fine bone fragments (Fig. 13d). In
addition, at the base of sample 2, there is a fine linear zone of
calcitic silt crusts with a fine carbonised dust at a clear planar
boundary (Fig. 13e) with the underlying micritic clay or the
underlying weathered karst floor of the cave as observed in the
base of sample 2 and in sample 3. The calcitic silt crust
probably represents a trampled floor containing hearth rake‐
out material on the weathered natural geology of the cave.
Sample 3 exhibited a pellety to aggregated calcitic silt fabric,
with abundant phosphatised, very fine sand‐size bone
fragments and included common very fine charcoal dust
and/or plant tissue fragments throughout (Fig. 13f).
The main micromorphological characteristics of the cave

sediments examined in 2017 are summarised in Table 2. Field
description and micromorphological observations of the most
representative west‐facing section of Trench 1/2005–1/2008
(Fig. 6) are as follows:
0–10 cm: The surface context 201 (white and grey at the top)

is an approximately 10 cm thick layer of ash with lateral
variations – it spans from 14 cm in the southern part of the
section, and it thins out towards the north to c. 2 cm. It varies
from laminated ash and burnt organic matter and charcoal (at
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least three pairs of white and black layers with a thin dark
grey layer at the top) to a 10 cm thick more homogeneous
layer of ash. Thin layers a few centimetres thick of organic
matter/Fe oxides are also visible. At microscopic scale,
context 201 (white and grey top) exhibits a spherulitic
micromass which is clearly the product of cyclical burning
of ruminant (probably sheep and/or goat) dung (Brochier
et al., 1992; Boschian and Montagnari‐Kokelj, 2000). In situ
breakage of bones and compaction of the layer are
indicators of trampling. Precipitation of secondary iron
oxides is also observable. At the bottom (10–16 cm), there is
a sandy silt reddish lens in the central part of the profile. It
represents a mixture of burnt sediment, herbivore dung and
wood ash, with common bone fragments. It has been
reworked by earthworms and/or other mesofauna.

16–22 cm: Context 203/dark red is a 10–16 cm thick silt
loam filling an erosional feature overlying a thin organic/Fe
oxides layer. The microstructure is granular and crumb. At
microscopic scale, this context is a reworked mixture of wood
ash, amorphous organic matter and tissue, bone fragments,
clay aggregates and phosphatic material.
22–43 cm: Context 203: millimetre‐thick organic/Fe oxide

laminations in a greyish yellow sandy silt which fills up the
concave erosional feature. At the bottom of the context (203)
there are a few limestone fragments that are a centimetre long,
with Fe/Mn coatings. Calcitic micromass with very frequent to
dominant phytoliths (Fig. 14:1a) and frequent weakly to
strongly impregnated Fe hydroxide nodules.
43–60 cm: Context 207 is a sandy silt ashy layer, yellowish

brown at the top, grey in the middle and greyish brown at the

© 2021 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 37(2) 142–180 (2022)

Table 4. Major and minor element oxide wt% compositions of cryptotephra glass shards extracted from Tephra T1 and T2 (Cryptotephra column 1)
at TT. Element oxide concentrations are normalised to anhydrous compositions, with original analytical totals shown. Runfile links to secondary
standard analyses for the two WDS‐EPMA sessions used, which are presented in SI Appendix 2.

SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O K2O P2O5 Cl Total runfile

T1_Col1:207(46–50 cm)
T1 77.26 0.03 12.68 0.95 0.00 0.01 0.67 2.98 5.29 0.02 0.11 96.73 b
T1 77.19 0.02 12.77 0.94 0.09 0.01 0.75 2.79 5.32 0.04 0.09 96.33 a
T2_Col1:203/207(30–32 cm)
T2 61.21 0.41 18.63 2.78 0.22 0.30 1.64 6.81 7.09 0.03 0.88 99.82 a
T2 61.63 0.43 18.47 2.65 0.24 0.30 1.66 6.70 7.02 0.03 0.86 99.17 a
T2 61.00 0.40 18.44 2.86 0.26 0.30 1.80 6.90 7.07 0.06 0.91 99.06 a
T2 61.89 0.42 18.64 2.80 0.16 0.30 1.73 6.19 7.00 0.05 0.82 98.74 a
T2 61.05 0.45 18.81 2.81 0.26 0.28 1.73 6.49 7.23 0.03 0.86 98.73 b
T2 61.40 0.34 18.69 2.87 0.16 0.34 1.63 6.38 7.19 0.04 0.94 98.45 a
T2 61.36 0.41 18.71 2.80 0.24 0.32 1.71 6.45 7.05 0.06 0.91 98.40 b
T2 60.22 0.39 18.45 3.86 0.14 0.79 2.88 3.69 8.78 0.16 0.63 98.26 b
T2 61.24 0.46 18.80 2.94 0.25 0.30 1.67 6.28 7.18 0.04 0.84 98.23 b
T2 60.66 0.34 18.78 3.19 0.16 0.33 1.76 6.51 7.28 0.08 0.90 98.20 a
T2 61.40 0.40 18.51 2.96 0.22 0.32 1.66 6.57 6.98 0.08 0.88 98.18 b
T2 60.88 0.47 18.74 2.78 0.21 0.29 1.69 6.63 7.42 0.05 0.84 98.14 a
T2 61.64 0.37 18.74 3.44 0.10 0.78 2.67 4.45 7.26 0.18 0.37 98.05 b
T2 60.96 0.43 18.55 2.89 0.26 0.33 1.73 6.84 7.09 0.05 0.87 97.74 a
T2 61.42 0.40 18.66 3.09 0.18 0.32 1.68 6.13 7.27 0.04 0.81 97.53 a
T2 61.30 0.43 18.28 3.47 0.08 0.62 2.70 3.56 8.77 0.12 0.66 97.42 a
T2 60.95 0.48 18.80 2.85 0.24 0.29 1.68 6.42 7.28 0.07 0.92 97.28 a
T2 61.27 0.42 18.71 2.75 0.27 0.33 1.73 6.32 7.26 0.04 0.89 96.74 a
T2 61.44 0.46 19.06 2.86 0.28 0.29 1.67 5.91 7.16 0.05 0.82 96.45 b
T2 61.10 0.37 18.72 2.87 0.27 0.31 1.68 5.81 7.98 0.04 0.85 96.21 a
T2 62.44 0.38 18.26 2.92 0.12 0.46 2.18 3.82 8.65 0.08 0.70 96.20 b
T2 61.43 0.42 18.66 2.83 0.19 0.29 1.70 6.36 7.18 0.07 0.86 96.11 a
T2 62.69 0.35 18.28 2.75 0.10 0.43 2.08 4.26 8.37 0.06 0.63 95.93 a
T2 62.41 0.38 18.23 2.98 0.18 0.43 2.13 4.06 8.39 0.10 0.72 95.70 b
T2 61.01 0.47 18.71 2.91 0.12 0.29 1.79 6.61 7.26 0.01 0.83 95.58 a
T2 61.84 0.44 18.73 2.95 0.21 0.31 1.66 5.93 6.97 0.04 0.92 95.26 b
T2 61.40 0.45 18.73 2.98 0.24 0.27 1.59 6.18 7.16 0.08 0.92 95.05 b
T2 78.30 0.12 13.52 1.19 0.05 0.21 1.10 2.20 6.17 0.01 0.07 97.14 b
T2 77.47 0.14 13.34 1.09 0.09 0.11 1.09 2.60 6.14 0.03 0.07 97.84 b

Table 5. Trace element concentrations (ppm) measured in cryptotephra glass shards from Tephra T2 (Cryptotephra column 1) at TT compared with
average values for cryptotephra glass shards from proximal outcrops of the Campanian Ignimbrite (after Lowe et al., 2012). Analyses below limits of
detection marked with ‘–’. For secondary standard analyses see SI Appendix 2.

Rb Sr Y Zr Nb Ba La Ce Pr Nd Sm Eu Gd Dy Er Yb Lu Ta Pb Th U

T2_Col1:203/207(30–32 cm)
T2 407 18 52 610 107 13 117 225 24 77 15 – 9 9 5 5 – 5 62 50 17
T2 417 22 54 611 108 16 116 228 23 78 14 – 9 8 5 6 – 5 60 44 15
T2 411 20 49 582 111 17 112 214 22 79 12 – 8 9 5 5 – 5 58 43 15
T2 427 22 53 627 116 16 122 233 24 84 13 – 10 9 5 5 – 5 62 48 16
Campanian Ignimbrite average
CI 451 42 52 638 117 24 121 225 23 80 14 1 10 9 5 5 1 5 64 49 17
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bottom with a few centimetre long limestone clasts. Wavy
boundary. Weakly to moderately separated granular micro-
structure and granostriated b‐fabric. A great amount of
phytolith‐producing plants are present in this context too
(Fig. 14:1b). The phytolith‐producing plants in contexts 203
and 207 may indicate bedding or stabling accumulation
(Karkanas and Goldberg, 2010: 604).
60–67 cm: Context 209 is from c. 30 to a few centimetre‐

thick silt loam sediment.
67–130 cm: Context 219; common c. 20 cm – 1.30m

limestone clasts.

i. Top (sample TT2) – silt loam, mixed with (209), unclear
boundary.

ii. Middle (sample TT10/2.1) – silt loam (with more clay than
the top) 70–80 cm thick sediment with frequent angular to
sub‐angular limestone clasts a few millimetres long.

iii. Bottom (sample TT 1) – silt loam with few angular to sub‐
rounded limestone clasts.

In this group of units at microscopic scale, very scanty traces
of human activity are observable with only a very few bone
fragments and amorphous organic matter.
Trench 2/2008 at the entrance of the cave, north‐facing

profile:

i. TT11: Top of thin section (sample collected at the top of the
profile) – herbivore dung. Lower part of the thin section –
silt loam. Calcitic micromass with common organic matter,
fresh roots and bones. Reworked layer.

ii. TT12: Weakly to strongly developed granular microstruc-
ture with stress features – granostriated b‐fabric indicates
cryoturbation due to frequent freeze–thaw cycles (Van
Vliet‐Lanoë, 2010). Rotation of sediment aggregates and
consequent formation of down‐turned cappings along the
surface are also observed (Fig. 14:2).

TT cryptotephra investigations

The occurrence of tephra in Column 1

Figure 15 shows the Column 1 (Figs. 4, 6) results of tephra
glass shard counting within sampled stratigraphy in TT. Tephra
was found dispersed in varying concentrations above unit 209
(above 0.56m depth). When investigated at 2 cm resolution,
there appear to be two shard accumulation zones, one of up to
342 s/g, at 0.46–0.50m depth (T1) and another of up to 214 s/
g between 0.30–0.32m depth (T2). Tephra shards were also
present at the depths in between these samples, suggesting
that fine particles have been reworked within, or into, the
sediment sequence over time. The glass shards in both T1 and
T2 show a similar range of morphologies. Both samples
contain a high number of clear, cuspate shards, characterised
by expanded bubble wall structures, then there are also a
number of clear, plate‐like shards, with either near‐triangular
or elongated form. In both samples the glass shards (measure-
ment of longest axis) range up to ~200 μm.
Tephra T1: Table 4 shows the composition of two tephra

shards analysed by WDS‐EMPA following filtering of the data
to those analyses with totals >95 weight percentage (wt%) and
that showed no evidence of microlite contamination. The
tephra glass shards are rhyolitic (Fig. 15), with normalised
major and minor element oxide compositions of 77.2 wt%
SiO2, 12.7 wt% Al2O3, 5.3 wt% K2O, ~2.9 wt% Na2O, 0.9 wt
% FeO and 0.7 wt% CaO. The small plate‐like shape of the
analysed shards prevented successful analysis by LA‐ICP‐MS.
Tephra T2: 29 tephra shards were successfully analysed by

WDS‐EMPA and four of these by LA‐ICP‐MS (Table 5). All except

© 2021 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 37(2) 142–180 (2022)
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for two of the tephra shards analysed were on curvilinear bubble
wall shards and these have phonolite‐trachytic compositions,
with 60.2–62.7wt% SiO2, 18.2–19.0wt% Al2O3, 7.0–8.8wt%
K2O, 3.6–6.9wt% Na2O, 2.7–3.9wt% FeO, and 1.6–2.9wt%
CaO. The two outlying shards both have plate‐like morphologies
and have rhyolitic compositions, which plot close to those of
shards in T1 (Fig. 16).
Figure 16 compares selected major and minor element

concentrations in T1 and T2 cryptotephra glass shards to
published glass shard data from widespread tephra layers
generated by central to eastern Mediterranean volcanic
eruptions dated to between 50 and 29 ka BP. The composition
of the two glass shards from T1 plot close to the compositions
of tephra derived from the ~50–30 ka Epoch 5 eruptive activity
of Ciomadul Volcano, which lies ~320 km to the north‐east of
TT in the Carpathian Mountains, Romania (Harangi et al.,
2015; Karátson et al., 2016; Molnár et al., 2019). Published
sources disagree on the possibility of distinguishing between
the eruption products of the Ciomadul Epoch 5 activity
(Harangi et al., 2020; Karátson et al., 2016). The compositional
subdivision shown in Fig. 16 reflects the identification of
deposits by Karátson et al. (2016) and using these data would
suggest that T1 belongs to the most evolved late or early
Ciomadul Epoch 5 eruption products. However, with only two
successful glass shard analyses from TT, we do not attempt to
make a secure correlation to a specific dated eruption event.
The composition of the Nisyros Upper Pumice, dated to
~47 ka BP and from the Greek Island of Nisyros ~1000 km to
the south‐southeast of TT, also plots close to the T1 glass shard
compositions (Fig. 16). Not only have no deposits from Nisyros
Island been found as far from source as this in the past, but a
Nisyros source can be discounted for T1 based on glass shard
TiO2 compositions (not shown).
As observed by Lowe et al. (2012), the main population of

glass shards from T2 correlates to the Campanian Ignimbrite
(CI), which was a major caldera‐forming eruption of the Campi
Flegrei Volcanic Zone in southern Italy, ~39 ka BP (Giaccio
et al., 2017). The two outlying shards from T2 that plot close to
the Ciomadul rhyolites could represent reworking of older
material from within the cave system, or primary ashfall from a
contemporary eruption (Harangi et al., 2020).

The occurrence of tephra in Column 2

Figure 15 shows the Column 2 (Fig. 4) results of tephra glass
shard counting within sampled stratigraphy. Tephra was found

dispersed in very low concentrations (<11 shards per sample)
throughout the sequence (0.10–1.20m depth). When investi-
gated at 2 cm resolution between 0.10–0.18m depth, few
shards were found, and this horizon was not followed up any
further. The observed tephra shards are plate‐like, with
maximum longest axis lengths <150 μm.

DK micromorphology

The main micromorphological characteristics of the cave
sediments are summarised in Table 3. In the field, the
sediments are almost homogeneous, with some differences
between contexts regarding minor colour variations and
degree of cementation. The frequency of subangular to
subrounded limestone clasts varies from common (contexts
2, 4) to very frequent (context 10).
In thin section, the sediments are also quite homogeneous,

but some more differences could be observed. Microstructure
is always crumb or granular, sometimes with coated grains in
context 10 (Fig. 17:1), weakly to well developed, and more or
less disturbed by channels and chambers with the exception of
context 4 which is angular blocky to vughy. The granular
microstructure is often referred to as a cold‐climate feature
(Van Vliet‐Lanoë, 2010). The occurrence of silt cappings on
skeleton grains (Fig. 17:2) also indicates seasonal frost action
on sediments (Van Vliet‐Lanoë, 2010), i.e. freezing and
thawing cycles in contexts 1, 4 and 10.
The related distribution pattern is always porphyric, single‐

spaced to open. The b‐fabric is calcitic crystallitic (contexts 1,
2, 4, 5–9) or granostriated (4, 10). Granostriated b‐fabric may
indicate wetting and drying of the sediment (Lindbo
et al., 2010).
Bone is the most frequent organic component of the

sediments; very few are burnt. In contexts 2, 4 and 10, these
bone fragments are very frequently sand‐sized (Fig. 17:3).
Sand‐size bone fragments were observed at several Middle and
Upper Palaeolithic sites, such as Riparo del Poggio (Boscato
et al., 2009), Riparo Mochi (Douka et al., 2012) in Italy, or
Mujina pećina in Croatia (Boschian et al., 2017). In some
contexts (especially in contexts 4 and 10) very frequent small
bone fragments could indicate the characteristics of the diet. A
possible explanation for bone splinters is that they were
deliberately smashed and kneaded to extract the bone marrow
and grease, activities that were performed in situ (Rabinovich
and Hovers, 2004). However, given that phosphates, which
can be identified as carnivore coprolites (Kolska Horwitz and
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Table 7. Stable isotope results and quality indicators for animal bone specimens analysed from Tabula Traiana. *value excluded from interpretation
due to unacceptable %C, %N and C:N values.

Chronostratigraphic
attribution

Sample
code Bone ID Species Element % Yield δ13C ‰ δ15N ‰ %C %N C:N

Middle Palaeolithic TAB01 PTT 08/211x.10 Cervus elaphus Ulna, carpal 9.9 –19.8 4.8 38.3 13.9 3.2
TAB02 PTT09/219/1 Cervus elaphus Phalanx II 2.6 –20.5 6.0 22.1 7.7 3.3
TAB05 PTT11/220/2 Capra ibex Metatarsal 11.3 –19.4 6.0 40.5 14.8 3.2
TAB06 PTT 08/206x.2 Capra ibex Metatarsal 6.1 –19.8 4.4 30.2 10.8 3.3
TAB07 PTT08/220/4 Capra ibex Calcaneus 4.4 –20.0 6.6 46.1 16.6 3.2
TAB08 PTT 08/206/4 Capra ibex Phalanx I 5.8 –20.2 3.6 38.7 13.9 3.3
TAB09 PTT08/219/1 Capra ibex Phalanx II 11.9 –19.4 4.4 45.9 16.8 3.2
TAB03 PTT 11/210x.16 Cervus elaphus Phalanx I 4.2 –19.6 6.2 34.3 12.3 3.3
TAB04 PTT 08/215x.5 large

carnivore?
Thoracic
vertebra

6.5 –18.0 14.2 40.8 14.9 3.2

Upper Palaeolithic TAB10 PTT 08/207x.52 Capra ibex Metatarsal 6.7 –19.4 3.4 42.7 15.6 3.2
TAB11 PTT 08/207/20 Capra ibex Metapodial 4.9 –19.6 5.2 35.8 13.2 3.2
TAB12* PTT 08/217/7 Capra ibex Phalanx I 1.9 –21.1 4.6 9.5 3.1 3.6
TAB13 PTT 08/217/36 Capra ibex Phalanx I 5.6 –19.1 5.3 43.8 16.0 3.2
TAB14 PTT 08/215/4 Capra ibex Phalanx I 4.0 –18.9 7.4 38.1 13.7 3.
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Goldberg, 1989; Goldberg, 1980) are common in the same
contexts, gnawing and digestion of the bones by carnivores
cannot be ruled out.
At the microscopic scale, sand‐ and silt‐sized amorphous

organic matter aggregates (Fig. 17:4), which are common in
contexts 1 and 4 and occur occasionally in context 2, are the
main evidence of human activity at the site; charcoal
fragments are also present but very scanty (context 10).

Radiometric chronology of TT

Eighteen AMS measurements on 17 bone fragments are
available from TT (Table 6). The rationale in sample selection
was primarily the presence of cutmarks as evidence of

anthropically modified specimens (Figs. 18 and 19), and
hence human activity in cave deposits. However, four dated
specimens did not bear any trace of anthropic modifications as
the choice of their selection was related to other criteria:
interest in knowing the age of the dated species in the case of
AA‐63887, which dates a cave lion metapodial, and in
providing the age of certain contexts lacking anthropically
modified bones in the case of OxA‐16419 (fireplace), ‐24819
and ‐26718. All dates provided late Pleistocene ages, out of
which five measurements produced infinite ages beyond
temporal limits of radiocarbon dating.
A borderline case is OxA‐35770 that at 95% confidence

provides an infinite date but produces the range of 52 350–46
720 at 68% confidence and would thus represent the earliest

© 2021 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 37(2) 142–180 (2022)

A B

D

FE

C

Figure 13. Tabula Traiana Cave; a. Photomicrograph of the bioturbated calcitic fabric with a few bone fragments, basal fabric unit 1, sample 1
(plane‐polarised light; frame width = 4.5mm); b. Photomicrograph of the bioturbated, heterogeneous mixture of calcitic silt, comminuted very fine
charred and plant material and amorphous sesquioxide‐replaced plant tissues, fabric unit 4, sample 1 (plane‐polarised light; frame width = 4.5mm);
c. Photomicrograph of the phosphatised micritc silt with common amorphous sesquioxide‐replaced plant tissue matter and included very fine to fine
charcoal, upper fabric unit 5 sample 1 (plane‐polarised light; frame width = 4.5mm); d. Photomicrograph of the calcitic ash fabric and a weathered
bone fragment (upper left), sample 2 (plane‐polarised light; frame width = 4.5mm); e. Photomicrograph of the thin linear zone of calcareous silt and
fine charcoal dust crusts at a clear planar boundary on the underlying weathered karst floor of the cave, sample 2 (plane‐polarised light; frame
width = 4.5mm); f. Photomicrograph of the bioturbated calcitic silty clay with abundant included fine sand‐size phosphatised bone fragments,
sample 3 (cross‐polarised light; frame width = 4.5mm). [Color figure can be viewed at wileyonlinelibrary.com]
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AMS‐dated specimen from this site. The stratigraphic position
of this cutmarked specimen in the lower stratigraphic units
would correspond with the obtained age. The estimated age of
OxA‐35770 broadly fits the OSL‐3 measurement from TT
(Table 7), which gave the date of 53.90± 3.76 BP. This OSL
sample comes from the lowest reached levels of stratigraphic

unit (226) at the cave entrance (Fig. 4) and, based on its
stratigraphic position, this date would represent a terminus
post quem for the MP occupation horizon with the Levallois‐
based technology described earlier. On the face of this
evidence, we may tentatively suggest that the MP occupation
of TT took place sometime between c. 52.3 and 46.7 kya cal

© 2021 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 37(2) 142–180 (2022)

A B

A B

Figure 14. Photomicrographs of sediment thin
sections from Tabula Traiana. 1. a: phytoliths in
context 207, PPL. b: same as a, XPL; 2. a:
granostriated b‐fabric; silt capping coating skeleton
grains, PPL. b: same as a, XPL. [Color figure can be
viewed at wileyonlinelibrary.com]

Figure 15. The column 1 and 2 results of tephra glass shard counting within sampled stratigraphy in TT. Distribution of tephra glass shards by depth
within cryptotephra column 1 and column 2. Right‐hand columns indicate archaeological units and boundaries. Wide blue bars show indicator
shard counts from initial low‐resolution samples (aggregated from multiple bag samples), estimated as shards per ~2 g dry sediment weight. Green
bars show high‐resolution (2 cm depth intervals) samples spanning intervals where tephra glass shards had been found in above‐background
concentrations and are quantified as shards per 1 g dry sediment. Red stars pinpoint tephra layers T1 and T2 for which samples were re‐extracted and
run for geochemical analyses. [Color figure can be viewed at wileyonlinelibrary.com]
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BP. Five infinite dates obtained on four cutmarked bones all
consistently come from lower stratigraphic units and thus
confirm the MP age of these deposits around or earlier than
50 kya. While lower chronostratigraphic units at TT probably
document a MIS3 Neanderthal occupation of the cave, this
late MP presence at TT may still have ceased several thousand
years before the earliest appearance of modern humans in the
Balkans by c. 45 kya cal BP (cf. Hublin et al., 2020). The ZooMS
identifications of some of the dated fragments (Table 7, Fig. 20)
reveal that cutmarks were left on the remains of bovids (Capra
sp., likely ibex), cervids and bears (likely cave bear), suggesting
the subsistence role of these taxa during the MP occupation.
The EUP date ranges obtained for TT fall between c. 42.3

and 36.9 kya cal BP (Fig. 19). These dates document rather
ephemeral and transitory (based on small artefact densities) UP
and, by proxy, modern human presence in the cave, possibly
already before but also after the CI eruption (see above). OxA‐
35764 with the range of 42 350–40 260 cal BP (95%
probability), which dates a cutmarked bone fragment (Fig. 18e),
is the earliest anthropically modified specimen attributed to
UP levels at TT, and its range overlaps with that of OxA‐16419
made on an anthropically non‐modified ibex horncorn

fragment from the context of the fireplace at the bottom of
the UP sequence (Fig. 5). Human presence at TT is also now
unambiguously confirmed during the early phases of the
Gravettian, between c. 33 to 29 kya cal BP, based on the
obtained dates on two cutmarked specimens (Fig. 18c,f). One
of these specimens, dated by OxA‐35593 is identified as
Canidae based on ZooMS analysis and shows particularly
elevated isotope values (Table 6), which could be indicative of
high freshwater protein consumption, presumably from fish,
seen in dog specimens from this region during the Mesolithic
(Borić 2011; Borić et al., 2004).
Finally, the results of OSL dating of samples 1 (23.60± 1.98 kya

cal BP) and 2 (17.93± 4.15 kya cal BP) (Table 7), supposed to date
two stratigraphically superimposed units (Fig. 6), seem to under-
estimate the known age of these deposits based on other proxies.
OSL‐2 seems particularly problematic as it has large error terms,
and its age is inverted to OSL‐1 from what is expected
stratigraphically. Measurements on additional samples including
more advanced single grain analyses will be required in
forthcoming studies in order to help explain the apparent age
underestimation observed for these samples. Meanwhile, both
OSL dates should be interpreted with caution.
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Figure 16. Selected major and minor element concentrations in T1 and T2 cryptotephra glass shards compared with published glass shard data from
widespread tephra layers generated by central to eastern Mediterranean volcanic eruptions dated to between 50 and 29 ka BP. [Color figure can be
viewed at wileyonlinelibrary.com]
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Radiometric chronology of DK

Nine AMS measurements on eight bone fragments are
available from DK (Table 6). As with the dating of TT, the
rationale in sample selection was the presence of cutmarks or
other modifications on bones as evidence of anthropically
modified specimens (Fig. 21). Apart from some minor
inversion in the topmost, Holocene levels, the dates consis-
tently show increasing age with depth. Three dates from the
topmost levels provide Holocene dates on cutmarked or
modified specimens dating human presence in the cave to the
Late and Early Copper Age and the Final Mesolithic/Early
Neolithic. It seems that the latter trace of visitation of the cave
comes from people who did not leave traces of material
culture indicative of this period.
Two dates from the bottommost Pleistocene‐age levels provide

infinite dates beyond temporal limits of radiocarbon dating. Three
other dates on two cutmarked specimens provide overlapping
ranges between 41 and 37.5 kya cal BP, and one date from the
topmost Pleistocene levels provides an early Gravettian date

between 30 and 29.2 kya cal BP (Fig. 22). In the absence of more
diagnostic UP material culture in the excavated area of the cave,
for the moment, it must remain an open question whether the
two obtained dates around 40 kya cal BP should be associated
with the confirmed modern human presence in this region at this
time, not leaving much material culture trace in the cave
sediments apart from cutmarked bones, or with surviving
Neanderthal groups inhabiting this area from before the temporal
reach of radiocarbon dating up to the transitional period, during
which they might have been contemporaneous with modern
humans. The overall homogeneity of the abundant knapped
stone assemblage from DK with MP characteristics may perhaps
tip the weight of the argument in the direction of the latter
scenario, but this suggestion must remain a mere speculation at
present. As we currently pursue further AMS dating of the
anthropically modified specimens and other contextual analyses
on the material from DK, this picture may become clearer soon.
Proteomic/ZooMS analyses on two AMS‐dated specimens

with cutmarks identified the remains of Ursus sp. (Fig. 23).
This may tentatively suggest that morphologically
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Figure 17. Photomicrographs of sediment thin
sections from DK. 1a: cryogenic loose granular
microstructure with granostriated b‐fabric; silt
cappings completely coating skeleton grains, PPL,
context 10. 1b: as in a, XPL; 2a: silt capping on
metamorphic quartz, PPL, context 10; 2b: as in a,
XPL; 3a: bone‐dominated sediment, PPL, context
10. 3b: as in a, XPL; 4a: amorphous organic matter,
PPL, context 1; 4b: as in a, XPL. [Color figure can be
viewed at wileyonlinelibrary.com]
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identifiable cave bear specimens found in Pleistocene‐age
sediments at DK should be linked to the manipulation of
cave bear by hominins both in earlier and later phases of the
MP occupation of the cave.
The attempt to provide more chronological clarity for DK

sediments by means of OSL dating did not result in the
expected outcome. The obtained dates from two super-
imposed samples, OSL‐1 (9.73± 2.01 BP) and OSL‐2

(17.34± 2.39 BP), taken from the west‐facing section of Trench
1/2013, while internally consistent regarding their stratigraphic
position, seem to underestimate the assumed age of these
sediments. A similar case is with the date on OSL‐3
(27.76± 1.57 BP) from the east‐facing section of the same
trench, supposed to date context 4 (Fig. 10), containing the MP
industry described above. OSL redating of these sediments
may provide some more clarity in the future.
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Figure 18. Cutmarked bone specimens from TT selected for AMS dating. [Color figure can be viewed at wileyonlinelibrary.com]

168 JOURNAL OF QUATERNARY SCIENCE

http://wileyonlinelibrary.com


© 2021 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 37(2) 142–180 (2022)

Figure 19. Bayesian modelling of all available dates from TT plotted against the North Greenland (NGRIP) δ18Oice record and event stratigraphy;
Greenland Stadial/Interstadial (GS/GI) cycles for the last 48 kyr BP (before 2000 AD). For the radiocarbon measurements, distributions in outline are
the results of simple radiocarbon calibrations and solid distributions are the output from the chronological model. The large square brackets and
OxCal v. 4.4 CQL2 keywords define the overall model exactly. [Color figure can be viewed at wileyonlinelibrary.com]
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Stable isotope analysis on the macromammals
from TT

All herbivorous taxa analysed had a diet typical of the
consumption of C3 vegetation, in an open landscape, with
no evidence of the canopy effect, which can produce lower
δ13C values (van der Merwe andMedina, 1989, 1991) (Table 8,
Fig. 24). This may in part be related to the species sampled.
Ibex, the most commonly sampled species, typically inhabit
rocky, craggy locations, whereas red deer are more flexible
in their habitats, and can inhabit woodland and reflect the
canopy effect (Drucker et al., 2008, 2011). We could infer
that at least some of the deer at the site were predominantly
living in open environments. Further analysis of a greater

number of red deer specimens, alongside palynological
analysis would help to explore vegetation cover in the
vicinity of the site further. One AMS‐dated specimen of Bos/
Bison clusters together with other herbivorous taxa and it
seems that overall there is a good correspondence among
the specimens belonging to the same species when we
compared specifically obtained stable isotope values re-
ported in Table 8 and indicative stable isotope values from
AMS burns (Table 6, Fig. 24).
The UP ibex specimens have slightly elevated δ13C values in

relation to the MP samples. This could indicate that there may
have been a shift in environmental conditions between these
two periods. Modern ibex preferentially inhabit higher
altitude, rocky environments (Grignolio et al., 2004; Parrini
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Figure 20. MALDI spectra identifications of fragmented bone specimens from TT. Masses of the key markers used for taxonomic identification are
indicated with arrows. The inset highlights that even markers with relatively low intensity values which are not visible in the full spectrum can be
used for identification.
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et al., 2009). A possible explanation for the slightly higher δ13C
values in the UP may be due to conditions changing slightly
between the two periods. Elevated δ13C values in plants and
their consumers can be produced by a multitude of environ-
mental factors, including moisture availability and rainfall
(Farquhar, et al., 1982; Stewart et al., 1995; Gröcke, et al.,
1997; Diefendorf et al., 2010; Kohn, 2010), and changes in
temperature have also been seen to impact on δ13C values
(Heaton, 1999). Additionally, increased δ13C values are also
associated with higher altitude locations (Farquhar et al., 1989;
Körner, et al., 1991; Hultine and Marshall, 2000), and could
suggest that ibex were perhaps living further up mountain
slopes during the UP, possibly due to improved conditions at
higher altitudes as well as increased vegetation availability at
these higher elevations. Alternatively, a change in the type
(DeNiro and Epstein, 1978; Bocherens and Drucker, 2003) or
parts of plants (Ehleringer, et al., 1987) being consumed can
affect δ13C values, and it might have caused the UP ibex to
have slightly elevated δ13C values relative to the MP
individuals. If so, this could suggest a type of vegetation
available in the habitats of the ibex. There might have been a
change in environmental conditions between the two

chrono‐cultural periods, although larger sample sizes, in
combination with wider environmental indicators would help
to explore this further.
Specimen TAB04 was originally identified as red deer Cervus

elaphus but has a δ15N value of 14.2‰ and a δ13C value of
−18.0‰ (Fig. 24, Table 7). These isotopic values are way outside
of the δ15N ranges for European deer in Palaeolithic Europe
(Drucker et al., 2003; Stevens et al., 2014; Jones et al., 2018,
2019), suggesting that the specimen might have been misidenti-
fied and that it probably comes from a large carnivore. The
sample was taken from a fragment of thoracic vertebra, which are
notoriously challenging to identify to species using traditional
zooarchaeological methods. The size and the upper part of the
spine is fused, suggesting that this individual is at least two years
of age. This vertebra has a rounded spinal process, which is
typical in carnivores and bears, and is consistent with being the
size of a medium–large mammal. Carnivore gnawing was noted
on both the transverse and spinal processes, suggesting that the
bone may not necessarily be linked to the periods of human
activity at the site. The high δ15N value would be highly unusual
for a cave bear (Ursus spelaeus), when compared with studies of
other late Pleistocene individuals.
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Figure 21. Cutmarked bone specimens from Dubočka‐Kozja selected for AMS dating. [Color figure can be viewed at wileyonlinelibrary.com]
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In fact, four Ursus sp. specimens (presumably U. spelaeus)
from TT and DK identified on the basis of ZooMS analyses and
directly AMS‐dated have associated AMS burn isotope values
and even if these values are only indicative values for the
moment, all δ15N values for these specimens are below 10‰
with some significant differences in trophic levels among these

specimens (two specimens from TT have δ15N values as low as
1.6‰ and 1.5‰, respectively), while also their low δ13C
values are all clustered away from herbivorous taxa. The
highest δ15N values for cave bear to date are around 10‰ from
late Pleistocene individuals at Peştera cu Oase in Romania,
interpreted as pertaining to an omnivorous diet (Richards et al.,

© 2021 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 37(2) 142–180 (2022)

Figure 22. Bayesian modelling of all available dates from DK plotted against the North Greenland (NGRIP) δ18Oice record and event stratigraphy;
Greenland Stadial/Interstadial (GS/GI) cycles for the last 48 kyr BP (before 2000 AD). For the radiocarbon measurements, distributions in outline are
the results of simple radiocarbon calibrations, solid distributions are the output from the chronological model. The large square brackets and OxCal
v. 4.4 CQL2 keywords define the overall model exactly. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 23. MALDI spectra identifications of fragmented bone specimens from DK. Masses of the key markers used for taxonomic identification are
indicated with arrows. The inset highlights a key, high mass, marker (m/z 3093) that is highly distinctive for Capra and Rangifer. While in some cases
not all markers were present to provide the lowest level taxonomic identification, partial identification was possible.
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2008), although recent compound‐specific amino acid analy-
sis of nitrogen isotopes of further Pleistocene cave bears in
Romania has indicated an exclusively herbivorous diet, with
higher δ15N values reflecting niche portioning within nitrogen
zones in the landscape (Naito et al., 2020). Effects such as
hibernation for longer durations during colder periods can
produce inflated δ15N values in cave bears (Fernández‐
Mosquera, et al., 2001; D'Anglade and Mosquera, 2008).
Younger or sub‐adult bears may also have inflated δ15N
values, reflecting a combination of residual breastfeeding in
addition to their mother's hibernation effect (Bocherens 2004;
Grandal‐D'Anglade, et al., 2011). The value of specimen
TAB04 would be extreme even considering these possible
effects, especially given that this individual is >2 years of age.
Hence the sampled specimen probably does not come from a
cave bear. Similarly, although brown bear (U. arctos) can be
omnivorous, isotopic studies of UP specimens from Austria
have shown them to have δ15N values of around 3‰
(Bocherens et al., 2011). Even accounting for baseline
differences between regions, and the possibilities of nursing
and hibernation signatures, a δ15N value of 14‰, as seen at
TT would be hard to achieve, suggesting that this individual is
probably not a brown bear. The isotopic result on TAB04
would be consistent with a carnivore feeding at a high trophic
level, consuming a diet rich in animal protein. Based on the size
of the vertebra, it likely belonged to a larger carnivore, which
have also been identified in TT sediments. In the broadly
contemporaneous deposits of the site of Šalitrena (Fig. 1), cave
hyena, wolf, leopard and cave lion were identified (Marín‐Arroyo
and Mihailović, 2017), attesting to the presence of large
carnivores in central Serbia at this time. Future ZooMS analysis
on the specimens should be able to clarify this dilemma.
As previously emphasised, while stable isotope values

associated with AMS burns cannot be used in comparisons
with data specifically obtained for stable isotopes in an
unproblematic way due to problems of using calibration
standards (Szpak et al., 2017), it could be informative to have a
quick look at some of these data. Apart from a fox specimen
with the δ15N value of 7.9‰, one AMS‐dated specimen of
Canis sp. clusters together with the previously discussed
TAB04, both exhibiting high trophic levels. This Canis sp.
specimen also has a relatively high δ13C value of −17.1‰, and
these elevated isotope values in this area close to the Danube
River could be indicative of the consumption of fish species,
both freshwater fish and anadromous sturgeon (cf. Borić 2011).
The isotope values of the Canis sp. specimen are similar to
isotope values obtained on dog specimens from Mesolithic

forager sites (Borić et al., 2004). There remains a possibility
that this specimen comes from a dog feeding on human
forager‐fisher leftovers or, alternatively, a wolf significantly
feeding on fish remains washed out by the Danube. Stable
isotope values for one AMS‐dated cave lion specimen from TT
measured at the Arizona lab with a very low δ13C (Table 6) is
considered problematic and lacks information on bone
chemistry, and hence is not taken into consideration.

Discussion
Over the past decade or so, a revised chronology for the Upper
Danube region gave some support to the idea that the ‘Danube
corridor’ (Conard and Bolus, 2003) might have played an
important role as one of the main axes for the dispersal of
modern humans and their assumed association with material
remains of Protoaurignacian and Aurignacian provenance and/
or transitional industries (Nigst, 2012; Teyssandier, 2008;
Tsanova, 2008), pushing its start in central Europe to c.
43 kya cal BP (Higham et al., 2012). Yet, while a decade ago,
early dates started to pop up for deposits with modern human
remains elsewhere in Europe (e.g. Benazzi et al., 2011;
Higham et al., 2011), the assessment of radiocarbon chronol-
ogy from south‐eastern Europe did not live up to the
expectations of the earliest dated IUP occurrences on the
continent, as would be expected assuming the Danube
corridor as the main conduit for dispersal. Over the past
several years, this situation led some authors to suggest that the
Danube corridor was unlikely to be the dispersal route for
modern humans into Europe and to propose instead a northern
route through the Russian steppes as the likely dispersal axis
for modern humans reaching central Europe and beyond (Bae
et al., 2017). However, the results of the most recent excavations
at the site of Bacho Kiro in northern Bulgaria (Fig. 1) have now
positively confirmed the earliest directly AMS‐dated modern
human remains in Europe found in Layer I of this site, and
associated material culture, including personal ornaments made
from cave bear teeth, with the modelled boundary of 45 820–43
650 cal BP (Hublin et al., 2020; Fewlass et al., 2020). These recent
findings have an important role to play both in understanding the
role of the Danube corridor as the dispersal axis of modern
humans into Europe and in assessing the last Neanderthal
settlement of the Balkans (cf. Mihailović 2020).
If it is likely that the two taxa, i.e. Neanderthals and modern

humans, were sympatric, and given the possibility for rapid
dispersals, the Danube Basin must surely be a likely region for
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Figure 24. Available δ13C and δ15N values
(n= 34) plotted against main periods at TT
and DK. Black symbols indicate specimens
analysed specifically for C and N isotopes
from Tabula Traiana only (n= 13, Table 7);
green symbols indicate stable isotope values
from AMS burns (n= 21, Table 6) that lack
the three‐point calibration standard and are
only indicative values. [Color figure can be
viewed at wileyonlinelibrary.com]
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this to have occurred, as aDNA results of one of the Oase Cave
fossils suggest, with Neanderthal ancestry as early as 4–6
generations or 2–3 lifespans (cf. Fu et al., 2015). Yet, there are
only a few sites across the Balkans that provide some secure
evidence for late Neanderthal occupation dated to MIS3, albeit
with slim chances of overlap with modern humans (e.g. see the
case of Vindija, Devièse et al., 2017). Hence, it remains
difficult to understand the extent of chronological overlap and
the nature of social interactions of Neanderthals and modern
human groups in different parts of the region. Few known MIS3
industries in the Balkans are generally characterised by a
reduction strategy using the discoid method, and a strong
denticulate component found on retouched tools (Mihailović
2020: 49).
Using different chronological proxies, the MP deposits of

Mujina Cave in Croatia (Fig. 1) have recently been securely
dated to between c. 49 and 39 kya with no evidence of
modern human presence at the site in this temporal interval
(Boschian et al., 2017). Farther south, in the hinterland of the
southern part of the Adriatic catchment, a recent assessment of
the upper part of the MP deposits at the deeply stratified
sequence of Crvena Stijena in Montenegro (Fig. 1) seems to
suggest no MP hominin presence later than 46 kya cal BP

(Mercier et al., 2017). On the other hand, facing shallow
Pleistocene‐age palimpsest deposits with low artefact yields in
the central Balkans and based on increased chronological
datasets from the sites Hadži Prodanova and Pešturina caves in
Serbia, Alex et al. (2019) suggest a working hypothesis that
hominins occupying sites before 39 kya cal BP were Nean-
derthals producing MP industries, followed by a gap until
34 kya cal BP, when the earliest phases of the Gravettian can
securely be linked to modern humans. However, these authors
do cite earlier published data from TT as rare evidence in the
central Balkans of EUP/Protoaurignacian presence at the site
prior to 39 kya cal BP.
The evidence from Level VII (Layer 5c) at the site of

Kozarnika in north‐western Bulgaria places the EUP industry
between 43 and 40 kya cal BP (Tsanova, 2012). Like TT, Layer
5c at Kozarnika contained CI‐Y5 tephra (Lowe et al., 2012).
The finds from Level VIII (Layer 6/7) at Kozarnika would
correspond to a transitional MP and IUP industry still poorly
defined (Sirakov et al., 2010), and based on two published
radiocarbon measurements (GifA‐101051: 43 600± 1200 BP;
GifA‐101052: 42 700± 1000 BP), put this occupation between
49 and 44 kya cal BP (Guadelli et al., 2005), thus making these
levels contemporaneous with previously mentioned IUP
occupation at Bacho Kiro. In the same general region of
north‐western Bulgaria, at the site of Samuilitsa II Cave (Fig. 1),
the MP assemblage of Levallois Mousterian is dated to
between 48 and 43 kya cal BP (GRN‐5181: 42 780± 1270 BP)
and shows some evidence of UP blade production alongside
the presence of a typical Levallois‐based industry (Tsanova,
2008, 2012). On the other hand, the late MP assemblage,
characterised as Denticulate Mousterian on quartz in Layer 2
and containing CI‐Y5 tephra, at the site of Golema Pešt in
North Macedonia is dated to c. 39 kya cal BP (Blackwell et al.,
2020) and might have been broadly contemporaneous with
the UP assemblage at TT. In western Serbia, an important
sequence covering the Middle to Upper Palaeolithic transi-
tional interval is found at the cave site of Šalitrena (Marín‐
Arroyo and Mihailović 2017; Mihailović et al., 2011). Here,
MP levels (5b, 5c and 6) are characterised as the typical Balkan
Mousterian with sidescrapers, Mousterian points, Levallois
artefacts and leaf‐like points. There are two infinite dates from
these levels while two other AMS dates from MP levels suggest
a late MP occupation between 42.8 and 39.2 kya cal BP. Early
Upper Palaeolithic level 5a at this site dates to between 36.6

and 33.2 kya BP and is characterised by the Aurignacian
industry with carinated endscrapers, burins and retouched
and unretouched bladelets. A small assemblage of Initial/Early
Upper Palaeolithic tools is found in Layer 4b at the cave site of
Baranica in eastern Serbia, which is absolutely dated by only
one measurement (OxA–13828: 35 780± 320 BP) to c.
41.5–40.2 kya cal BP (Mihailović et al., 2011).
Adjacent to the Danube Gorges area, along a possible

modern human dispersal route into Europe, there is a
concentration of EUP open‐air Aurignacian sites (Anghelinu
et al., 2012; Băltean, 2011; Chu, 2018; Chu et al., 2014, 2015;
Hauck et al., 2018): Tincova, Românești‐Dumbrăvița (dated
by luminiscence to between 41 and 37 kya cal BP, Schmidt,
et al., 2013), Coșava I and Crvenka‐At (dated by luminiscence
to 36.4± 2.8 kya cal BP, Nett et al., 2021) (Fig. 1). In the
Danube Gorges area (Fig. 2), previous MP finds come from the
cave site of Peştera Hoților at Băile Herculane as well as from
a concentration of several open‐air locations in the vicinity of
the village of Gornea in south‐western Romania, on the edge
of the Liubcova Basin – the hill of Căunita, where a small area
of 28 m2 was excavated in 1969 and 1970, yielding a small
assemblage of 154 pieces with the characteristics of a MP
industry (Levallois flakes and points, sidescrapers), and the hill
of Păzăriște where some 180 pieces were found and were
characterised as Aurignacian (Băltean, 2011: 52). Also, at the
small cave site of Pescari‐Livadiței on the banks of the
Danube, not far from the two previously mentioned open‐air
sites, Pleistocene levels were discovered in the 1970s, and a
small lithic assemblage is characterised as ‘Mousterian’ with
the presence of sidescrapers and several Levallois flakes.
Some 50 km north of DK, at the cave site of Peştera cu Oase on

the Romanian side of the Danube, cranial and dental remains of
two modern human individuals showing recent Neanderthal
ancestry (Fu et al., 2015; Trinkaus et al., 2012) are dated to
42–37 kya cal BP and are broadly contemporaneous with the
dated deposits at TT and DK. On the Serbian side of the Danube,
at around 40 km distance from DK, two nearby cave sites – Kozja
and Mala caves near Blizna – were recently investigated
documenting both Middle and Early Upper Palaeolithic occupa-
tions, with Kozja containing hominin remains possibly coming
from the Neanderthals (D. Mihailović, pers. comm.).
So, how does the presented evidence from TT and DK fit these

wider regional patterns, and how do the two sites compare with
each other? TT and DK are located in the same general area of
the Danube Gorges at the distance of some 60 km as the crow
flies, and in part their occupation is broadly contemporaneous.
When it comes to MP knapped stone assemblages, there are
striking differences in the type and knapping quality of raw
material used at the two locations, with quartz and quartzite
almost exclusively found at TT while at DK good quality flint raw
materials were almost exclusively used. In addition, the MP
assemblage at DK contains non‐local raw materials, such as
Balkan/Upper Cretaceous flint originating in northern Bulgaria
some 150 km away. If future dating of the MP assemblage from
DK reconfirms the current late date and if we could unambigu-
ously show the association of this assemblage with Neanderthals,
and also assuming the movement of modern humans from the
east along the Danube, this presence of non‐local raw materials
could be a possible indication of a westward displacement of
Neanderthal groups during the transitional interval. The absence
of late MP (and by proxy Neanderthal) assemblages in the eastern
Balkans might have been an effect of such a displacement.
There are also differences in the general density of artefacts

between the two sites – while TT Cave conforms to the wider
pattern of low artefact yields seen in the central Balkans (cf.
Alex et al., 2019), DK shows a surprisingly abundant and
diverse assemblage with all stages of core reduction sequence
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present. While little trace of human presence is evidenced in
MP deposits of TT based on micromorphological analysis, the
presence of very small bone fragments in micromorphological
sections of Pleistocene deposits at DK may be an indication of
in situ activities for marrow extraction, resulting in smashed
and kneaded bones. This pattern would be consistent with the
rather fragmented and small faunal assemblage found at this
site. Possible hunting/consumption of cave bear is evidenced
at both sites based on cutmarked and directly dated bones
identified through proteomic analysis and may conform to the
wider pattern of cave bear use in other MP sequences (e.g.
Bacho Kiro, Samuilitsa II). Yet, it seems that this species might
have had a significance also for slightly later and/or broadly
contemporaneous modern human populations during the IUP
phases, as evidenced by Bacho Kiro pendants from cave bear
teeth (Hublin et al., 2020) and other Gravettian‐age ornaments
from south‐eastern Europe (Borić and Cristiani, 2019).
A combination of different chronological and chronostrati-

graphic proxies suggests that TT had been used by Neanderthals
likely several thousand years before the site was used by modern
humans sometime between 42.3 and 36.9 kya cal BP, which is
consistent with the pattern of MP settlement abandonment prior
to 44 kya BP seen in other areas of the Balkans (Mihailović 2020:
56). The likely gap in the sequence between c. 47 and 42 kya cal
BP coincides with the duration of the Greenland Stadial (GS) 13‐
Heinrich 5 event, which was a global cooling episode associated
with severe aridity in south‐eastern Europe (Müller et al., 2011),
as well as GS12, c. 44.3–43.3 (Fig. 19). These stadials are
recorded in speleothems from Romania, albeit characterised here
by a smaller amplitude and less severe cooling and aridity than in
other parts of Europe, especially the Atlantic and Mediterranean
(Staubwasser et al., 2018). The UP presence at TT possibly
precedes the CI eruption, which can be used at this site as a
chronostratigraphic marker based on the presence of cryptote-
phra glass shards consistent with CI materials in cave deposits.
The micromorphological analyses of MP sediments from both TT
and DK suggest cold conditions characterised by freezing and
thawing cycles. The chronological situation and association with
material culture remains less clear at DK at present. The flint
assemblage from this site bears strong similarities both with the
assemblage fromMujina Cave to the west (highly reduced, a high
presence of denticulates, faceted platforms), but also to the east of
the Balkans in the late MP assemblage from Samuilitsa II Cave.
Yet it remains unclear how best to interpret the dates for
cutmarked bones that place a hominin presence at the site
sometime between 41 and 38 kya cal BP. There is a distinct
possibility that these dates relate to the use of the site by late
Neanderthals at a very close proximity to modern humans found
in the wider region, but more work on chronological and
contextual understanding of the site's sediments is needed in
order to either confirm or reject this possibility. If in the future we
could confirm the late presence of Neanderthals at DK in
association with a distinct MP industry, it would mean that in this
area along the Danube Neanderthals and modern humans might
have indeed crossed their paths and were sympatric.

Conclusions
In this paper, relying on multiple analytical proxies, we have
presented preliminary chronostratigraphic insights into Pleisto-
cene sediments of two cave sites located on the southern, Serbian
side of the Lower Danube Basin in the Danube Gorges area.
While the site of TT is located on the sheer cliffs of the Danube in
the downstream part of the region, DK is located some 10 km
into the hinterland of the Danube in a more upstream area of the
region. We have been able to identify and document an EUP

presence at TT around 41–37 kya cal BP characterised by a very
small lithic assemblage made on non‐local materials with some
characteristics of the Protoaurignacian (Dufour bladelet), while
the lower strata of the cave contain evidence of the MP
occupation, characterised by a Levallois industry on quartz and
quartzite, currently dated to between 52.3 and 46.7 kya cal BP.
The presence of CI‐Y5 cryptotephra at the site provides an
important chronostratigraphic marker for the hominin use of the
cave and suggests the occupation of the site by likely modern
humans prior to the CI eruption. The site was likely used and
abandoned by Neanderthals several millennia before the arrival
of modern humans. The Neanderthal disappearance at TT
coincides broadly with the arrival of first modern humans farther
to the east of the Danube Gorges area c. 47 to 45 kya cal BP.
In this paper, we have presented for the first time the

chronostratigraphic sequence at DK, which suggests a late MP
hominin occupation of the site c. 41 to 37.5 kya cal BP based on
three AMS dates on two cutmarked bones. While more
extensive radiometric dating of this sequence remains a priority,
this occupation possibly continues from the older hominin use
of the site based on several infinite AMS dates from the bottom
of the sequence. At DK, there is a relatively large assemblage of
knapped stone artefacts made on flint characterised by good
knapping properties, some of which might have come from
sources 150 km away (in northern Bulgaria). Based on the
presence of a Levallois technology with a prominence of
denticulates and convergent scrapers, along with a small
presence of some UP categories of tools (endscrapers, points,
borers), on the face of the current evidence, we suggest that the
occupation of DK could probably be associated with the
refugial occupation of some of the latest Neanderthal groups
who were contemporaneous with the first modern humans in
the wider region of the Balkans.
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